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Abstract 
 

The NASA Glenn Research Center in-house computer model Closed Cycle Engine Program (CCEP) 
was used to explore the design trade space and off-design performance characteristics of 100 kWe-class 
recuperated Closed Brayton Cycle (CBC) power conversion systems. Input variables for a potential 
design point included the number of operating units (1, 2, 4), cycle peak pressure (0.5, 1, 2 MPa), and 
turbo-alternator shaft speed (30, 45, 60 kRPM). The design point analysis assumed a fixed turbine inlet 
temperature (1150 K), compressor inlet temperature (400 K), helium-xenon working-fluid molecular 
weight (40 g/mol), compressor pressure ratio (2.0), recuperator effectiveness (0.95), and a Sodium-
Potassium (NaK) pumped-loop radiator. The design point options were compared on the basis of thermal 
input power, radiator area, and mass. For a nominal design point with defined Brayton components and 
radiator area, off-design cases were examined by reducing turbine inlet temperature (as low as 900 K), 
reducing shaft speed (as low as 50% of nominal), and circulating a percentage (up to 20%) of the 
compressor exit flow back to the gas cooler. The off-design examination sought approaches to reduce 
thermal input power without freezing the radiator. 
 
 

Introduction 
 

Closed-Brayton-Cycle (CBC) is a candidate thermodynamic cycle for space applications because it 
lends itself to power classes ranging from milliwatts to megawatts (Baggenstoss and Ashe, 1992). 
Potential missions include low power for scientific instruments (Zagarola, 2003), tens-to-hundreds of 
kilowatts for spacecraft (Barrett and Reid, 2004; Mason, 2004; Tilliette, 1990), and surface power 
(Mason, 1999; Mason et al., 1992). Heat sources for electrical power generation can be, but are not 
limited to, a radioisotope, solar concentrator (Shaltens and Mason, 1996), or nuclear reactor (Baggenstoss 
and Ashe, 1992; Barrett and Reid, 2004; Mason, 1999; Mason et al., 1992; Tilliette, 1990). 

This study focuses on the CBC and heat rejection system (HRS) design for a 100 kWe nuclear reactor 
power conversion system (PCS), as well as off-design performance for one of the design points. 
Numerous variables exist in the design of a CBC PCS; this analysis considers variations in cycle peak 
pressure, turbine-alternator-compressor (TAC) shaft speed, and the number of CBC units. Pressure has a 
large influence on heat transfer and duct wall thicknesses. Shaft speed most directly affects alternator, 
bearing, and turbomachinery design. The number of CBC units could play an important role in 
redundancy considerations. Mission requirements ultimately dictate how the CBC PCS should be 
optimized, but concentrating on only a portion of the entire PCS could result in less than desirable 
system-level effects such as a low efficiency PCS, large radiator, or excessive system mass. 
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Operating in an off-design mode could be advantageous (or required) for missions where the PCS 
needs to run continuously for several years, but does not need to produce full power for extended lengths 
of time. Reducing the amount of heat input could extend reactor life; lowering turbine inlet temperature 
could reduce secondary creep in hot-end materials. Other aspects to consider when operating at off-design 
conditions are ancillary electronic power demands, alternator frequency variation with shaft speed 
changes, and the desire to keep radiator coolant temperatures above freezing. Off-design operational 
variations considered herein are reduced TAC shaft speed, lowered turbine inlet temperature (TIT), and 
compressor exit flow recirculation. 

The method for modeling several CBC PCS design and off-design operating points is outlined in this 
paper. The results that are highlighted in this paper are CBC mass (TAC, ducting, recuperator, and gas 
cooler), radiator area, and required heat input for the design cases; alternator power, required heat input, 
and radiator coolant temperature are presented for the off-design cases. 
 
 

Method 
 

A NASA Glenn Research Center in-house modeling code, called the Closed Cycle Engine Program 
(CCEP) (Barrett and Reid, 2004), was used for the CBC PCS study. The program originated in the mid 
1980’s from a FORTRAN aircraft gas turbine engine code known as the Navy/NASA Engine Program 
(NNEP) (Fishbach, 1975). Components such as a solar collector, heat exchangers, ducting, a pumped-
loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into 
a high fidelity (approximately 34,000 lines of code) design and performance tool for CBC PCS and HRS. 
The user constructs the CBC PCS component by component and has command of up to 36 inputs for 
some components. Components are integrated in CCEP with user-defined control variables to calculate 
converged solutions. 

Subsystems with the highest fidelity are the CBC (TAC, ducting, recuperator, and gas cooler) and 
radiator HRS. Their mass and performance are of most interest to this study. The power management and 
distribution (PMAD) subsystem, nuclear reactor subsystem, and reactor shield are also modeled in CCEP. 
Their masses are used in the total PCS optimization scheme, but are not included in the results presented 
in this paper. 

Most design variables (turbine and compressor inlet temperatures, compressor pressure ratio, 
working-fluid composition, alternator power, radiator far-field temperature, heat exchanger effectiveness) 
are fixed for each design case, while different combinations of system peak pressure, shaft speed, and 
number of CBC units are examined. Brayton cycle and HRS geometries are fixed for the transition to off-
design and cycle state-point conditions vary as needed, with the exception of shaft speed, TIT, and 
compressor exit flow circulation, where two are held constant while the third is varied. Turbomachinery 
performance maps are used during off-design calculations. 
 
 

Model Description 
 

Some design parameters are drawn from previous test hardware such as the 10 kWe Brayton Rotating 
Unit (BRU) (Davis, 1972) and from the detailed conceptual design report for the Space Station Freedom 
Solar Dynamic Power Module (NASA Lewis Research Center, 1993). Although exact values are not 
necessarily taken from these sources, they are used as guides for developing the physical model for this 
study because they reflect previously developed CBC designs and configurations. 

Compressor pressure ratio and helium-xenon (He-Xe) working-fluid molecular weight are 2.0 and 
40 g/mol, respectively, because Barrett and Reid (2004) showed in a previous CCEP study that at this 
power level total system mass minimized at these design points. One difference between Barrett and 
Reid’s study and this work is the calculation method for bearing and windage losses. Barrett and Reid 
scaled bearing and windage losses on shaft speed, shaft diameter, gas viscosity, and cavity pressure; this 
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study scales bearing and windage losses on alternator power and CBC peak pressure alone and losses are 
smaller than Barrett and Reid’s predictions, especially for higher power and higher pressure cases. 

The turbine and compressor are both single-stage, radial machines whose design performances 
(functions of corrected mass flow rate, pressure ratio, and specific speed) are determined using 
conventional design efficiency tables. The TAC is integrated on a single rotating shaft supported by gas-
foil journal and thrust bearings. Inlet temperatures for the turbine and compressor are fixed at 1150 K and 
400 K, respectively, for this study. Turbomachinery rotordynamics are not evaluated by CCEP and could 
severely affect the feasibility of cases examined. Both the gas cooler and the recuperator are counterflow, 
compact, plate-fin heat exchangers with offset strip-fin surfaces; effectiveness values for the gas cooler 
and recuperator are 97 and 95%, respectively. Gas duct diameters are sized to produce desired relative 
pressure losses. Each duct wall thickness is sized to withstand 100,000 hours of creep stress at design-
point temperature and pressure with a 2.0 factor of safety. A duct exists between the compressor exit and 
the gas cooler entrance to allow a percentage, λ, of the working-fluid to be “short-circuited” and flow 
from the compressor discharge directly to the gas cooler during off-design operation. 

The radiator is a pumped-loop configuration with sodium-potassium (NaK-78) coolant and Annular 
Linear Induction Pump(s) (ALIP). Materials and geometries are similar to those described in the Space 
Station Freedom report (NASA Lewis Research Center, 1993). For power conversion systems with more 
than one CBC converter, a separate NaK loop and pump is provided for each converter. The NaK tube 
inside diameter is sized to achieve a desired pressure drop across the radiator. The effective sink 
temperature for the radiator is 200 K, representative of earth-orbital conditions. 

The results reported herein focus on the Brayton PCS and HRS. However, CCEP is configured to 
optimize the overall system, from the reactor heat source to the PMAD electrical bus, based on various 
design parameters. Some of these typical optimization parameters have been fixed for this study to 
evaluate the performance sensitivities attributed specifically to the Brayton and heat rejection subsystems. 
The reported masses and radiator areas are based on a single-string power train with no spare units. Some 
mission architectures would benefit by spare converter units or heat rejection cooling loops. 
 
 

Design Case Definition 
 

Three parameters are varied so that their effects on CBC mass (TAC, ducting, recuperator, and gas 
cooler), radiator area, ARad, and required heat input, QHeXe, can be examined. The first parameter is the 
number of CBC units; we consider four units operating at 25 kWe each, two units operating at 50 kWe 
each, and one unit operating at 100 kWe. The other two parameters are shaft speed, N, (30, 45, 60 kRPM) 
and CBC peak pressure, Ppeak, (0.5, 1.0, 2.0 MPa). The CCEP input deck is configured to minimize total 
system mass (PMAD, HRS, CBC, reactor, and shield) by determining the optimal NaK mass flow rate. 
 
 

Off-Design Performance Case Definition 
 

A nominal design point is subsequently selected to investigate off-design performance. Radiator 
coolant mass flow rate is held constant from design to off-design to keep the ALIP pumps operating near 
design-point efficiency. The radiator far-field temperature is maintained at 200 K. 

Off-design baseline.—The design point chosen for off-design study is the two-unit, 45000 RPM, 1.0 
MPa case, which falls in the mid-range for CBC mass, ARad, and QHeXe of the design cases considered. 
Figure 1 shows the baseline off-design CBC and HRS schematic. 

Off-design operating conditions.—Three operating conditions are varied in the transition to off 
design: N (as low as 50% design speed), λ (as high as 20%), and TIT (as low as 900 K). Each off-design 
case varies only one operating condition at a time to examine independently the effects on QHeXe, 
alternator power, WAlt, and NaK cold temperature, TCold,NaK. Sodium-potassium-78 freezes at 262 K. 
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Figure 1. CBC and HRS Off-Design Baseline Case. 

 
 
 
 

Results and Discussion 
 

The first data set examines the CBC and HRS dependence on three design parameters. A total of 22 
combinations of design points were obtained. Cases for which the code did not converge were one unit 
operating at 0.5 MPa, one unit operating at 1.0 MPa and 60000 RPM, and two units operating at 0.5 MPa 
and 60000 RPM. Convergence did not occur because the design points were outside the realm of CCEP’s 
turbomachinery design tables. The second data set examines CBC and HRS performance at three off-
design operating conditions. 
 
 

Design Point Dependence on Number of CBC Units, Shaft Speed, and Peak Pressure 
 

Figures 2 through 4 show the dependence of CBC mass, ARad, and QHeXe on the number of CBC units 
and Ppeak for a fixed N of 45000 RPM. Over the Ppeak range of 0.5 to 2.0 MPa, ARad and QHeXe increase 
linearly, with the four-unit case increasing fastest. Mass for the one-unit case is slightly less at 2.0 MPa 
than at 1.0 MPa. Mass for the two-unit case minimizes at 1.0 MPa, and mass increases less than linearly 
for the four-unit case. For a given Ppeak, the one-unit CBC exhibits the lowest mass, ARad, and QHeXe. 
Trends similar to those shown in figures 2 through 4 were observed for values of N fixed at 30000 and 
60000 RPM. Plots at all three speeds are presented in appendix A. 
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Figure 2. CBC Mass Dependence on Ppeak and 
Number of CBC Units for a Fixed N of 45000 RPM. 
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Figure 3. Radiator Area Dependence on Ppeak and 
Number of CBC Units for a Fixed N of 45000 RPM. 
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Figure 4. Required Heat Input Dependence on Ppeak and 
Number of CBC Units for a Fixed N of 45000 RPM. 

Figures 5 through 7 show the dependence of CBC mass, ARad, and QHeXe on the number of CBC units 
and N for a fixed Ppeak of 2.0 MPa. Over the N range of 30000 to 60000 RPM, ARad, and QHeXe decrease 
nearly linearly, and mass decreases less than linearly, with the four-unit case decreasing fastest in each 
figure. For a given N, the one-unit case exhibits the lowest mass, ARad, and QHeXe. Trends similar to those 
shown in figures 5 through 7 were observed for values of Ppeak fixed at 0.5 and 1.0 MPa. Plots at all three 
pressures are presented in appendix B. 
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Figure 5. CBC Mass Dependence on N and 
Number of CBC Units for a Fixed Ppeak of 2.0 MPa. 
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Figure 6. Radiator Area Dependence on N and 
Number of CBC Units for a Fixed Ppeak of 2.0 MPa. 
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Figure 7. Required Heat Input Dependence on N and 
Number of CBC Units for a Fixed Ppeak of 2.0 MPa. 

 
Performance tradeoffs among components occur when design parameters are varied. For example, the 

recuperator, accounting for 30 to 50% of the Brayton converter mass, becomes less massive as Ppeak 
increases, but duct walls become thicker, thus heavier, at higher pressures. On the other hand, 
turbomachinery efficiencies decrease with increased pressure, requiring more heat input and a larger 
radiator area. This effect can be somewhat mitigated by increasing shaft design speed. It is the resulting 
combination of performances among components that must be examined. Table 1 summarizes the design 
cases that yield the minimum CBC mass, ARad, and QHeXe. 
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TABLE 1. DESIGN-POINT CASES FOR THE MINIMUM CBC MASS, 
REQUIRED HEAT INPUT, AND RADIATOR AREA. 

Minimum Case # Units Mass (kg) QHeXe (kWt) ARad (m2) Ppeak (MPa) N (RPM) 

CBC Mass 1 580 426 165 2.0 60000 

Radiator Area 1 656 398 155 1.0 45000 

Heat Input 2 890 393 158 0.5 45000 
 
 

Off-Design Performance of a Two-Unit, 1 MPa, 45000 RPM Design-Point CBC 
 

Figure 8 shows the resulting off-design performance of a two-unit, 1.0 MPa, 45000 RPM design-
point CBC when N is reduced from 100 to 50% of design speed. Alternator power, QHeXe, and TCold,NaK all 
decrease as shaft speed is reduced, with QHeXe decreasing fastest and off-design efficiency (WAlt /QHeXe) 
remaining about the same. At 50% of design speed, WAlt, QHeXe, and TCold,NaK are 24 kWe, 101 kWt, and 
303 K, respectively. 

Figure 9 shows the resulting off-design performance when λ is increased from 0 to 20%. Alternator 
power and QHeXe decrease at about the same rate, indicating that off-design efficiency decreases as λ 
increases; TCold,NaK remains almost constant. At λ of 20%, WAlt, QHeXe, and TCold,NaK are 16 kWe, 369 kWt, 
and 398 K, respectively. 

Figure 10 shows the resulting off-design performance when TIT is reduced from 1150 to 900 K. 
Alternator power and QHeXe decrease linearly at as TIT decreases, while TCold,NaK decreases slightly. At a 
TIT of 900 K, WAlt, QHeXe, and TCold,NaK are 25 kWe, 300 kWt, and 381 K, respectively. 
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Figure 8. CBC and HRS Off-Design Performance Dependence 
on Reduced Shaft Speed. 
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Figure 9. CBC and HRS Off-Design Performance Dependence on 
Percentage of Compressor Exit Flow Recirculation. 
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Figure 10. CBC and HRS Off-Design Performance Dependence on 
Reduced Turbine Inlet Temperature. 

 
Varying shaft speed is the single most effective method for reducing the required heat input; running 

at 50% of design speed reduces qhexe by 77% because the he-xe mass flow rate is slowed and less heat is 
required to achieve the 1150 k tit. However, tcold,nak drops to 303 k and compressor operation is very close 
to surge. Circulating the compressor outlet flow and lowering the tit are much less effective at reducing 
qhexe, but tcold,nak does not drop below 381 k. The λ of 20% operating point requires 23% more qhexe than 
the 900 k tit operating point, but the 900 k tit case produces 36% more alternator power. 
 
 

Conclusions 
 

Design-point radiator area and required heat input increased as cycle peak pressure increased from 
0.5 to 2.0 Mpa and the number of CBC units increased from one to four for a 100 kwe Brayton power 
conversion system. Closed-Brayton-Cycle mass increased as the number of CBC units increased from one 
to four, with the one-unit and four-unit minimum masses occurring at peak pressures of 2.0 and 1.0 MPa, 
respectively. This supports the well-accepted view that Brayton units scale well at higher power classes. 
As shaft speed increased from 30000 to 60000 RPM and the number of CBC units decreased from four to 
one, CBC mass, radiator area, and required heat input all decreased. 

For a two-unit CBC design-point, off-design operating conditions showed that reducing shaft speed 
was the most effective method for reducing required heat input; circulating compressor exit flow was the 
least effective. None of the off-design operating points resulted in radiator cold temperatures below the 
NaK freezing point. Of the three off-design parameters examined, a combination of reduced shaft speed 
and lowered TIT might prove to be most effective at keeping NaK from freezing, decreasing required heat 
input, and slowing secondary creep in hot-end materials. 
 
 

Nomenclature 
 

ARad radiator total surface area (m2) 
CIT compressor inlet temperature (K) 
CPR compressor pressure ratio 
λ compressor exit flow recirculation (%) 
N turbine-alternator-compressor shaft speed (RPM) 
Ppeak Brayton cycle peak pressure (MPa) 
QHeXet heat input to Helium-Xenon working-fluid (kWt) 
TCold,NaK sodium-potassium cold temperature (K) 
TIT turbine inlet temperature (K) 
TPR turbine pressure ratio 
Tsink radiator effective sink temperature (K) 
WAlt alternator power (kWe) 
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Appendix A 
Design Point Results at Three Shaft Speeds 
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CBC Mass Dependence on Ppeak and 
Number of CBC Units for a Fixed N of 30000 RPM. 
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Required Heat Input Dependence on Ppeak and 
Number of CBC Units for a Fixed N of 30000 RPM. 
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CBC Mass Dependence on Ppeak and 
Number of CBC Units for a Fixed N of 45000 RPM. 

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5

Cycle Peak Pressure (MPa)

R
ad

ia
to

r A
re

a 
(m

2 )

4 Units
2 Units
1 Unit

N  = 45000 RPM

 

Radiator Area Dependence on Ppeak and 
Number of CBC Units for a Fixed N of 45000 RPM. 
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Appendix B 
Design Point Results at Three Cycle Peak Pressures 
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